Two views of linguistic structure

Context-free grammars (CFGs)

Phrase structure organizes words into nested constituents.

Dependency structure

Dependency structure shows which words depend on (modify, attach to, or are arguments of) which other words.

modify:修饰词,attach to:连接词

Why do we need sentence structure?

  • Humans communicate complex ideas by composing words together into bigger units to convey complex meanings.
  • Listeners need to work out what modifies [attaches to] what
  • A model needs to understand sentence structure in order to be able to interpret language correctly

Linguistic Ambiguities

  • Prepositional phrase attachment ambiguity 介词短语附着歧义
  • Coordination scope ambiguity 对等范围歧义
  • Adjectival/Adverbial Modifier Ambiguity 形容词修饰语歧义
  • Verb Phrase (VP) attachment ambiguity 动词短语依存歧义

Dependency paths identify semantic relations 依赖路径识别语义关系 help extract semantic interpretation.

Dependency Grammar and Dependency Structure

Tesnière had them point from head to dependent – we follow that convention.

We usually add a fake ROOT so every word is a dependent of precisely 1 other node.

箭头指向依赖者 dependent。

通常添加⼀个伪根指向整个句子的头部,这样每个单词都精确地依赖于另⼀个节点。

Dependency Conditioning Preferences

  • Bilexical affinities 两个单词间的密切关系
  • Dependency distance 依赖距离:主要是与相邻词
  • Intervening material 介于中间的物质:如果中间的词语是动词或者标点,则两边的词语不太可能有依存
  • Valency of heads:How many dependents on which side are usual for a head?

Methods of Dependency Parsing

Arc-standard transition-based parser 标准弧转移算法

基于转换的算法有一个栈和一个词队列,除此之外还有一个已经 parse 的依存关系。

该算法包含以下操作:

  • LEFT-ARC 栈顶和它下面的词构成依存关系,并且中心词是栈顶元素,把这两个词从栈中弹出,把这个依存关系加入到已parse的数据结构里,最后把中心词再加到栈中
  • RIGHT-ARC 栈顶和它下面的词构成依存关系,中心词是下面的元素,把这两个词从栈中弹出,把这个依存关系加入到已parse的数据结构里,最后把中心词再加到栈中
  • SHIFT 把队列中的一个词加入到栈顶

这个算法很简单,初始状态栈里只有一个root,而队列里是所有的词,然后循环直到状态是结束状态(栈中只有root,队列也为空)。

例子:

Other Algorithms

  • Greedy transition-based parsing
  • MaltParser
  • Conventional Feature Representation

Evaluation of Dependency Parsing

  • UAS (unlabeled attachment score) 指 无标记依存正确率 ,不考虑依存关系的类型,只考虑依存关系的对应单词是否正确,如父节点被正确识别的准确率;
  • LAS (labeled attachment score) 指有标记依存正确率,同时考虑依存关系的对应单词以及依存关系类型,即词的父节点,以及与父节点的句法关系都被正确识别的概率。

Neural dependency parsing

Just one word win.